V = 2217.6 (6) Å³

Mo $K\alpha$ radiation

 $0.42 \times 0.27 \times 0.19 \text{ mm}$

11746 measured reflections

3953 independent reflections

3351 reflections with $I > 2\sigma(I)$

 $\mu = 0.92 \text{ mm}^{-1}$

T = 296 (2) K

 $R_{\rm int} = 0.033$

Z = 4

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

catena-Poly[[diagua(2,2'-bipyridine- $\kappa^2 N, N'$)nickel(II)]-*u*-biphenyl-2,2'dicarboxylato- $\kappa^2 O:O'$

Zhe An^a* and Xian-Chun Niu^b

^aSchool of Chemistry and Life Science, Maoming University, Maoming 525000, People's Republic of China, and ^bSchool of Chemical and Environmental Engineering, Maoming University, Maoming 525000, People's Republic of China Correspondence e-mail: anz_md@163.com

Received 28 October 2008; accepted 9 November 2008

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.005 Å; R factor = 0.034; wR factor = 0.088; data-to-parameter ratio = 12.8.

In the title compound, $[Ni(C_{14}H_8O_4)(C_{10}H_8N_2)(H_2O)_2]_n$, the Ni^{II} atom is coordinated in a slightly distorted octahedral geometry by two water molecules, two N atoms from a 2,2'bipyridine ligand and two O atoms from the carboxylate groups of two 2,2'-biphenyldicarboxylate (2,2'-dpa) ligands. The 2,2'-dpa ligand acts as a bridge between neighbouring Ni^{II} atoms, forming one-dimensional coordination polymers along [100]. The coordinated water molecules form hydrogen bonds to the carboxylate O atoms of 2,2'-dpa within the same coordination polymer, and one $O-H\cdots\pi$ interaction is also formed to 2,2'-dpa.

Related literature

For other metal–organic frameworks containing 2,2'-dpa, see: Rueff et al. (2003); Wang et al. (2006); Xu et al. (2006).

Experimental

Crystal data

[Ni(C14H8O4)(C10H8N2)(H2O)2] $M_r = 491.11$ Orthorhombic, $P2_12_12_1$ a = 10.9087 (15) Åb = 11.214 (2) Å c = 18.129 (3) Å

Data collection

Bruker APEXII CCD diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2001) $T_{\min} = 0.699, T_{\max} = 0.845$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.034$	$\Delta \rho_{\rm max} = 0.21 \text{ e} \text{ Å}^{-3}$
$wR(F^2) = 0.088$	$\Delta \rho_{\rm min} = -0.30 \ {\rm e} \ {\rm \AA}^{-3}$
S = 1.00	Absolute structure: Flack (1983),
3953 reflections	1694 Friedel pairs
310 parameters	Flack parameter: 0.042 (16)
H atoms treated by a mixture of	
independent and constrained	
refinement	

Table 1

$D - H \cdot \cdot \cdot A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$O5-H1W\cdots Cg1$	0.86 (2)	2.91	3.741 (3)	163
$O5-H2W\cdots O2^{i}$	0.85(2)	1.90(2)	2.740 (3)	169 (3)
$O6-H3W \cdots O4^{i}$	0.81(2)	1.91 (2)	2.676 (4)	158 (4)
$O6-H4W \cdot \cdot \cdot O2$	0.82 (2)	1.98 (2)	2.790 (3)	167 (4)

Symmetry code: (i) $x - \frac{1}{2}, -y + \frac{3}{2}, -z + 2$. Cg1 is the centroid of the C2-C7 benzene ring.

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

The authors acknowledge financial support from Maoming University.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BI2317).

References

- Bruker (2001). SADABS and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Rueff, J.-M., Pillet, S., Bonaventure, G., Souhassou, M. & Rabu, P. (2003). Eur. J. Inorg. Chem. pp. 4173-4178.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Wang, R.-H., Gong, Y.-Q., Han, L., Yuan, D.-Q., Lou, B.-Y., Wu, B.-L. & Hong, M.-C. (2006). J. Mol. Struct. 784, 1-6.
- Xu, X.-X., Lu, Y., Wang, E.-B., Ma, Y. & Bai, X.-L. (2006). Cryst. Growth Des. 6, 2029-2035.

Acta Cryst. (2008). E64, m1547 [doi:10.1107/S1600536808036866]

catena-Poly[[diaqua(2,2'-bipyridine- $\kappa^2 N, N'$)nickel(II)]- μ -biphenyl-2,2'-dicarboxylato- $\kappa^2 O: O'$]

Z. An and X.-C. Niu

Comment

2,2'-Biphenyldicarboxylic acid (H₂dpa) has been demonstrated to be a useful ligand for constructing metal-organic frameworks (Rueff *et al.*, 2003; Wang *et al.*, 2006; Xu *et al.*, 2006). The title compound is a Ni^{II} coordination polymer in which 2,2'-biphenyldicarboxylate (2,2'-dpa) acts as a bridging ligand.

The asymmetric unit (Fig. 1) contains one Ni^{II} atom coordinated by one 2,2'-bipyridine ligand, 2,2'-dpa and two water molecules. The Ni^{II} atom is hexacoordinated in a slightly distorted octahedral geometry by two water molecules, two N atoms from 2,2'-bipyridine, and two O atoms from carboxylate groups of two 2,2'-dpa. The 2,2'-dpa ligand acts as a bridge to link two neighboring Ni^{II} atoms, forming a 1-D coordination polymer along [100] (Fig. 2). Hydrogen bonds from the coordinated water molecules and the O atoms of the carboxylate groups are formed within the same coordination polymer (Fig. 3). One water molecule also forms an O—H···πi interaction to the neighbouring benzene ring of 2,2'-dpa.

Experimental

A mixture of nickel(II) chloride hexahydrate (0.1 mmol), 2,2'-bipyridine (0.1 mmol), biphenyl-2,2'-dicarboxylic acid (0.2 mmol) and H_2O (16 ml) in a 25 ml Teflon-lined stainless steel autoclave was kept at 463 K for five days. Green crystals were obtained after cooling to room temperature with a yield of 12%. Elemental analysis calculated: C 58.64, H 4.89, N 5.70%; found: C 58.62, H 4.86, N 5.65%.

Refinement

H atoms of the water molecules were located from difference Fourier maps and refined freely with $U_{iso}(H) = 1.2U_{eq}(O)$. All other H atoms were placed in calculated positions with C—H = 0.93 Å and allowed to ride with $U_{iso}(H) = 1.2U_{eq}(C)$.

Figures

Fig. 1. Asymmetric unit of the title compound showing displacement ellipsoids at 30% for non-H atoms.

Fig. 2. 1-D coordination polymer running along the [100] direction.

Fig. 3. View of the packing along the *a* axis.

catena-Poly[[diaqua(2,2'-bipyridine- $\kappa^2 N, N'$)nickel(II)]- μ -biphenyl-2,2'-dicarboxylato- $\kappa^2 O:O'$]

Crystal data	
[Ni(C ₁₄ H ₈ O ₄)(C ₁₀ H ₈ N ₂)(H ₂ O) ₂]	$F_{000} = 1016$
$M_r = 491.11$	$D_{\rm x} = 1.471 {\rm ~Mg~m}^{-3}$
Orthorhombic, $P2_12_12_1$	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: P 2ac 2ab	Cell parameters from 3953 reflections
a = 10.9087 (15) Å	$\theta = 2.1 - 25.1^{\circ}$
b = 11.214 (2) Å	$\mu = 0.92 \text{ mm}^{-1}$
c = 18.129 (3) Å	T = 296 (2) K
V = 2217.6 (6) Å ³	Block, green
Z = 4	$0.42 \times 0.27 \times 0.19 \text{ mm}$

Data collection

Bruker APEXII CCD diffractometer	3953 independent reflections
Radiation source: fine-focus sealed tube	3351 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.033$
T = 296(2) K	$\theta_{\text{max}} = 25.1^{\circ}$
ϕ and ω scans	$\theta_{\min} = 2.1^{\circ}$
Absorption correction: multi-scan (SADABS; Bruker, 2001)	$h = -13 \rightarrow 12$
$T_{\min} = 0.699, T_{\max} = 0.845$	$k = -9 \rightarrow 13$
11746 measured reflections	$l = -20 \rightarrow 21$

Refinement

Refinement on F^2	Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full	H atoms treated by a mixture of independent and constrained refinement
$R[F^2 > 2\sigma(F^2)] = 0.034$	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.051P)^{2}]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
$wR(F^2) = 0.088$	$(\Delta/\sigma)_{max} < 0.001$
S = 1.00	$\Delta \rho_{\rm max} = 0.21 \ {\rm e} \ {\rm \AA}^{-3}$

3953 reflections $\Delta \rho_{min} = -0.30 \text{ e} \text{ Å}^{-3}$ 310 parametersExtinction correction: nonePrimary atom site location: structure-invariant direct
methodsAbsolute structure: Flack (1983), 1694 Friedel pairsSecondary atom site location: difference Fourier mapFlack parameter: 0.042 (16)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Ni1	0.24756 (4)	0.69154 (3)	0.898676 (19)	0.03527 (12)
C1	0.5625 (3)	1.0010 (3)	1.06148 (16)	0.0367 (7)
C2	0.4305 (3)	1.0354 (3)	1.03948 (16)	0.0377 (8)
C3	0.4167 (4)	1.1232 (3)	0.98610 (18)	0.0525 (9)
Н3	0.4864	1.1582	0.9661	0.063*
C4	0.3031 (5)	1.1602 (4)	0.9617 (2)	0.0673 (14)
H4	0.2977	1.2188	0.9255	0.081*
C5	0.1971 (4)	1.1108 (4)	0.9905 (2)	0.0616 (12)
Н5	0.1208	1.1353	0.9735	0.074*
C6	0.2059 (3)	1.0243 (3)	1.04525 (19)	0.0515 (10)
Н6	0.1351	0.9918	1.0656	0.062*
C7	0.3233 (3)	0.9853 (3)	1.07010 (16)	0.0386 (8)
C8	0.3257 (3)	0.9030 (3)	1.13631 (16)	0.0360 (7)
С9	0.3102 (3)	0.9525 (3)	1.20745 (18)	0.0492 (9)
Н9	0.2988	1.0345	1.2110	0.059*
C10	0.3108 (4)	0.8874 (4)	1.27158 (19)	0.0552 (10)
H10	0.2954	0.9239	1.3167	0.066*
C11	0.3343 (4)	0.7687 (4)	1.26763 (18)	0.0553 (10)
H11	0.3383	0.7222	1.3101	0.066*
C12	0.3524 (3)	0.7181 (3)	1.19772 (17)	0.0469 (8)
H12	0.3706	0.6372	1.1950	0.056*
C13	0.3445 (3)	0.7820 (3)	1.13252 (16)	0.0356 (7)
C14	0.3500 (3)	0.7168 (3)	1.05824 (16)	0.0342 (7)
C15	0.4937 (3)	0.8346 (3)	0.8927 (2)	0.0509 (9)
H15	0.4958	0.8224	0.9435	0.061*
C16	0.5799 (3)	0.9085 (3)	0.8606 (2)	0.0608 (10)
H16	0.6392	0.9457	0.8894	0.073*
C17	0.5771 (4)	0.9267 (4)	0.7847 (3)	0.0678 (12)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

0.6337	0.9772	0.7625	0.081*
0.4900 (4)	0.8695 (4)	0.7424 (2)	0.0596 (10)
0.4877	0.8802	0.6915	0.071*
0.4047 (3)	0.7949 (3)	0.77769 (18)	0.0401 (7)
0.3066 (3)	0.7286 (3)	0.73743 (17)	0.0383 (8)
0.3005 (4)	0.7230 (3)	0.65934 (18)	0.0527 (10)
0.3595	0.7609	0.6306	0.063*
0.2058 (4)	0.6605 (3)	0.6264 (2)	0.0587 (11)
0.2007	0.6555	0.5753	0.070*
0.1192 (4)	0.6058 (3)	0.66986 (18)	0.0525 (10)
0.0547	0.5638	0.6486	0.063*
0.1297 (3)	0.6143 (3)	0.74713 (18)	0.0451 (8)
0.0705	0.5780	0.7764	0.054*
0.4065 (2)	0.7797 (2)	0.85219 (14)	0.0402 (7)
0.2231 (2)	0.6733 (2)	0.78055 (13)	0.0363 (6)
0.28142 (19)	0.75413 (19)	1.00612 (11)	0.0407 (6)
0.4185 (2)	0.6272 (2)	1.05422 (12)	0.0451 (6)
0.58196 (19)	0.89368 (18)	1.07528 (12)	0.0385 (5)
0.6422 (2)	1.0789 (2)	1.06222 (17)	0.0670 (8)
0.1519 (2)	0.85857 (18)	0.89069 (12)	0.0394 (5)
0.187 (2)	0.895 (3)	0.9264 (15)	0.047*
0.0764 (16)	0.858 (3)	0.9025 (17)	0.047*
0.3552 (2)	0.5345 (2)	0.91659 (13)	0.0466 (6)
0.302 (3)	0.484 (3)	0.9225 (18)	0.056*
0.385 (3)	0.557 (3)	0.9558 (13)	0.056*
	0.6337 0.4900 (4) 0.4877 0.4047 (3) 0.3066 (3) 0.3005 (4) 0.3595 0.2058 (4) 0.2007 0.1192 (4) 0.0547 0.1297 (3) 0.0705 0.4065 (2) 0.2231 (2) 0.28142 (19) 0.4185 (2) 0.58196 (19) 0.6422 (2) 0.1519 (2) 0.187 (2) 0.0764 (16) 0.3552 (2) 0.302 (3) 0.385 (3)	0.63370.97720.4900 (4)0.8695 (4)0.48770.88020.4047 (3)0.7949 (3)0.3066 (3)0.7286 (3)0.3005 (4)0.7230 (3)0.35950.76090.2058 (4)0.6605 (3)0.20070.65550.1192 (4)0.6058 (3)0.05470.56380.1297 (3)0.6143 (3)0.7050.57800.4065 (2)0.7797 (2)0.2231 (2)0.6733 (2)0.28142 (19)0.75413 (19)0.4185 (2)0.6272 (2)0.58196 (19)0.89368 (18)0.6422 (2)1.0789 (2)0.1519 (2)0.85857 (18)0.187 (2)0.5345 (2)0.302 (3)0.484 (3)0.385 (3)0.557 (3)	0.63370.97720.76250.4900 (4)0.8695 (4)0.7424 (2)0.48770.88020.69150.4047 (3)0.7949 (3)0.77769 (18)0.3066 (3)0.7286 (3)0.73743 (17)0.3005 (4)0.7230 (3)0.65934 (18)0.35950.76090.63060.2058 (4)0.6605 (3)0.6264 (2)0.20070.65550.57530.1192 (4)0.6058 (3)0.66986 (18)0.05470.56380.64860.1297 (3)0.6143 (3)0.77640.4065 (2)0.7797 (2)0.85219 (14)0.2231 (2)0.6733 (2)0.78055 (13)0.28142 (19)0.75413 (19)1.00612 (11)0.4185 (2)0.6272 (2)1.05422 (12)0.58196 (19)0.89368 (18)1.07528 (12)0.6422 (2)1.0789 (2)1.06222 (17)0.1519 (2)0.8587 (18)0.89069 (12)0.187 (2)0.895 (3)0.9025 (17)0.3552 (2)0.5345 (2)0.91659 (13)0.302 (3)0.484 (3)0.9225 (18)0.385 (3)0.557 (3)0.9558 (13)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U ³³	U^{12}	U^{13}	U^{23}
Ni1	0.0390 (2)	0.0344 (2)	0.0325 (2)	-0.0010 (2)	0.0015 (2)	-0.00163 (16)
C1	0.047 (2)	0.0325 (18)	0.0310 (16)	0.0033 (16)	0.0056 (14)	0.0009 (14)
C2	0.058 (2)	0.0275 (16)	0.0275 (15)	0.0093 (16)	-0.0028 (15)	-0.0034 (13)
C3	0.080 (3)	0.0377 (19)	0.0401 (19)	0.006 (2)	-0.0049 (19)	0.0003 (17)
C4	0.114 (4)	0.042 (2)	0.045 (2)	0.026 (2)	-0.033 (2)	-0.0035 (18)
C5	0.080 (3)	0.049 (2)	0.056 (2)	0.034 (2)	-0.032 (2)	-0.015 (2)
C6	0.054 (2)	0.052 (2)	0.048 (2)	0.0185 (18)	-0.0131 (16)	-0.0215 (18)
C7	0.049 (2)	0.0350 (18)	0.0319 (16)	0.0132 (15)	-0.0035 (15)	-0.0093 (14)
C8	0.0320 (17)	0.0416 (18)	0.0343 (16)	0.0010 (14)	0.0026 (14)	-0.0022 (14)
C9	0.056 (2)	0.046 (2)	0.045 (2)	0.0093 (17)	0.0060 (17)	-0.0082 (17)
C10	0.065 (2)	0.068 (3)	0.0335 (18)	-0.004 (2)	0.0110 (17)	-0.0084 (18)
C11	0.071 (3)	0.065 (3)	0.0296 (17)	-0.011 (2)	0.0051 (18)	0.0021 (17)
C12	0.059 (2)	0.0417 (19)	0.0402 (18)	-0.0088 (17)	-0.0019 (17)	0.0041 (16)
C13	0.0349 (17)	0.0436 (19)	0.0283 (15)	-0.0034 (15)	0.0040 (13)	-0.0020 (14)
C14	0.0370 (17)	0.0334 (18)	0.0321 (16)	-0.0062 (15)	0.0009 (14)	-0.0021 (14)
C15	0.0413 (19)	0.054 (2)	0.057 (2)	-0.0117 (16)	0.0082 (18)	-0.0048 (19)
C16	0.043 (2)	0.053 (2)	0.087 (3)	-0.0107 (19)	0.007 (2)	-0.002 (2)
C17	0.048 (2)	0.054 (2)	0.102 (3)	-0.013 (2)	0.015 (2)	0.019 (2)
C18	0.061 (2)	0.056 (2)	0.062 (2)	-0.002 (2)	0.016 (2)	0.018 (2)

C19	0.0407 (17)	0.0313 (17)	0.0482 (19)	0.0054 (15)	0.0106 (15)	0.0042 (15)
C20	0.0513 (19)	0.0280 (16)	0.0356 (17)	0.0079 (15)	0.0065 (15)	0.0024 (14)
C21	0.078 (3)	0.043 (2)	0.0376 (18)	0.0082 (19)	0.0099 (18)	0.0045 (16)
C22	0.096 (3)	0.050 (2)	0.0305 (17)	0.018 (2)	-0.0062 (19)	0.0007 (17)
C23	0.072 (3)	0.041 (2)	0.044 (2)	0.0062 (19)	-0.0159 (18)	-0.0114 (18)
C24	0.053 (2)	0.042 (2)	0.0401 (19)	-0.0008 (17)	-0.0012 (16)	-0.0061 (16)
N1	0.0388 (15)	0.0395 (15)	0.0423 (16)	-0.0044 (13)	0.0074 (12)	-0.0037 (13)
N2	0.0432 (16)	0.0361 (14)	0.0295 (12)	0.0032 (12)	0.0015 (11)	-0.0020 (11)
01	0.0520 (14)	0.0380 (12)	0.0322 (11)	0.0053 (10)	-0.0061 (10)	-0.0038 (9)
O2	0.0518 (14)	0.0400 (13)	0.0436 (13)	0.0029 (12)	-0.0086 (11)	-0.0076 (11)
O3	0.0403 (12)	0.0297 (12)	0.0456 (12)	0.0018 (10)	-0.0019 (10)	0.0082 (10)
O4	0.0539 (15)	0.0333 (14)	0.114 (2)	-0.0040 (13)	0.0030 (16)	0.0071 (15)
O5	0.0418 (12)	0.0328 (12)	0.0436 (13)	0.0019 (10)	0.0014 (11)	-0.0006 (10)
06	0.0465 (15)	0.0415 (14)	0.0519 (15)	0.0074 (11)	-0.0036 (12)	-0.0072 (12)

Geometric parameters (Å, °)

Ni1—O3 ⁱ	2.098 (2)	C13—C14	1.533 (4)
Ni1—O1	2.103 (2)	C14—O2	1.255 (4)
Ni1—O6	2.142 (2)	C14—O1	1.276 (3)
Ni1—O5	2.149 (2)	C15—N1	1.351 (4)
Ni1—N1	2.166 (3)	C15—C16	1.383 (5)
Ni1—N2	2.168 (2)	C15—H15	0.930
C1—O4	1.233 (4)	C16—C17	1.391 (6)
C1—O3	1.247 (4)	С16—Н16	0.930
C1—C2	1.543 (5)	C17—C18	1.379 (6)
C2—C3	1.388 (5)	С17—Н17	0.930
C2—C7	1.412 (5)	C18—C19	1.406 (5)
C3—C4	1.380 (6)	C18—H18	0.930
С3—Н3	0.930	C19—N1	1.361 (4)
C4—C5	1.385 (6)	C19—C20	1.493 (5)
C4—H4	0.930	C20—N2	1.352 (4)
C5—C6	1.391 (5)	C20—C21	1.419 (4)
С5—Н5	0.930	C21—C22	1.385 (6)
C6—C7	1.427 (4)	C21—H21	0.930
С6—Н6	0.930	C22—C23	1.374 (5)
C7—C8	1.514 (4)	C22—H22	0.930
C8—C13	1.374 (5)	C23—C24	1.409 (5)
C8—C9	1.414 (4)	С23—Н23	0.930
C9—C10	1.373 (5)	C24—N2	1.357 (4)
С9—Н9	0.930	C24—H24	0.930
C10—C11	1.358 (6)	O3—Ni1 ⁱⁱ	2.098 (2)
C10—H10	0.930	O5—H1W	0.86 (2)
C11—C12	1.402 (5)	O5—H2W	0.85 (2)
C11—H11	0.930	O6—H3W	0.81 (2)
C12—C13	1.385 (4)	O6—H4W	0.82 (2)
C12—H12	0.930		
03 ⁱ —Ni1—O1	95.44 (8)	C8—C13—C12	118.5 (3)

O3 ⁱ —Ni1—O6	93.63 (9)	C8—C13—C14	121.3 (3)
O1—Ni1—O6	92.16 (9)	C12—C13—C14	120.1 (3)
O3 ⁱ —Ni1—O5	89.65 (8)	O2—C14—O1	124.7 (3)
O1—Ni1—O5	81.77 (8)	O2—C14—C13	117.1 (3)
O6—Ni1—O5	173.36 (9)	O1—C14—C13	118.1 (3)
$O3^{i}$ Ni1 N1	169.97 (9)	N1—C15—C16	121.5 (4)
01-Ni1-N1	93 86 (9)	N1-C15-H15	119.2
06—Ni1—N1	89.75 (10)	C16—C15—H15	119.2
O5—Ni1—N1	87.97 (9)	C15—C16—C17	119.3 (4)
$O3^{i}$ Ni1 N2	94 20 (9)	C15—C16—H16	120.3
01-Ni1-N2	165 48 (9)	C17—C16—H16	120.4
06-Ni1-N2	98 04 (9)	C_{18} C_{17} C_{16}	119.8 (4)
05—Ni1—N2	87 46 (9)	C18—C17—H17	120.1
N1—Ni1—N2	75.96 (10)	C16—C17—H17	120.1
O4—C1—O3	124.2 (3)	C17—C18—C19	118.7 (4)
O4—C1—C2	118.9 (3)	C17—C18—H18	120.7
O3—C1—C2	116.9 (3)	C19—C18—H18	120.7
C3—C2—C7	117.8 (3)	N1—C19—C18	121.1 (3)
C3—C2—C1	117.3 (3)	N1—C19—C20	115.7 (3)
C7—C2—C1	124.9 (3)	C18—C19—C20	123.2 (3)
C4—C3—C2	122.3 (4)	N2-C20-C21	121.7 (3)
С4—С3—Н3	118.8	N2-C20-C19	115.4 (3)
С2—С3—Н3	118.8	C21—C20—C19	122.9 (3)
C5—C4—C3	120.5 (3)	C22—C21—C20	119.2 (4)
С5—С4—Н4	119.7	C22—C21—H21	120.4
C3—C4—H4	119.7	C20—C21—H21	120.4
C4—C5—C6	119.4 (3)	C23—C22—C21	119.5 (3)
C4—C5—H5	120.3	C23—C22—H22	120.3
С6—С5—Н5	120.3	C21—C22—H22	120.3
C5—C6—C7	120.0 (4)	C22—C23—C24	119.0 (3)
С5—С6—Н6	120.0	C22—C23—H23	120.5
С7—С6—Н6	120.0	C24—C23—H23	120.5
C2—C7—C6	119.8 (3)	N2—C24—C23	122.5 (3)
C2—C7—C8	122.7 (3)	N2—C24—H24	118.7
C6—C7—C8	116.9 (3)	C23—C24—H24	118.7
C13—C8—C9	116.8 (3)	C15—N1—C19	119.5 (3)
C13—C8—C7	124.4 (3)	C15—N1—Ni1	124.1 (2)
C9—C8—C7	118.8 (3)	C19—N1—N1	115.6 (2)
C10-C9-C8	124.3 (3)	C20—N2—C24	118.1 (3)
С10—С9—Н9	117.9	C20—N2—N11	116.4 (2)
C8—C9—H9	11/.8	C_24 —N2—Nil	125.4 (2)
	118.3 (3)		132.81 (19)
C11—C10—H10	120.7	C1—O3—Ni1 ^{II}	129.1 (2)
C9—C10—H10	120.8	N11	99 (2)
C10—C11—C12	118.1 (3)	N11	117 (2)
C10—C11—H11	121.0	H1W - O5 - H2W	104 (2)
C12—C11—H11	120.9	N11	102 (3)
C13—C12—C11	123.6 (3)	N11—O6—H4W	95 (3)

С13—С12—Н12	118.2		H3W—O6—H4W		112 (3)
С11—С12—Н12	118.2				
Symmetry codes: (i) $x-1/2$,	-y+3/2, -z+2; (ii) $x+1/2$	2, -y+3/2, -z+2.			
Hydrogen-bond geometry	(Å, °)				
D—H···A		<i>D</i> —Н	H···A	$D \cdots A$	D—H··· A

O5—H1W···Cg1	0.86 (2)	2.91	3.741 (3)	163
O5—H2W⋯O2 ⁱ	0.85 (2)	1.90 (2)	2.740 (3)	169 (3)
O6—H3W···O4 ⁱ	0.81 (2)	1.91 (2)	2.676 (4)	158 (4)
O6—H4W…O2	0.82 (2)	1.98 (2)	2.790 (3)	167 (4)

Symmetry codes: (i) x-1/2, -y+3/2, -z+2.

Fig. 2

